3.156 \(\int \frac{A+C \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx\)

Optimal. Leaf size=150 \[ \frac{(5 A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{(3 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{(3 A+C) \sin (c+d x)}{a d \sqrt{\cos (c+d x)}} \]

[Out]

((3*A + C)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((5*A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*a*d) + ((5*A + 3*C)*S
in[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - ((3*A + C)*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]) - ((A + C)*Sin[c +
 d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.193421, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3042, 2748, 2636, 2641, 2639} \[ \frac{(5 A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{(3 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{(3 A+C) \sin (c+d x)}{a d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])),x]

[Out]

((3*A + C)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((5*A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*a*d) + ((5*A + 3*C)*S
in[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - ((3*A + C)*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]) - ((A + C)*Sin[c +
 d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x]))

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx &=-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))}+\frac{\int \frac{\frac{1}{2} a (5 A+3 C)-\frac{1}{2} a (3 A+C) \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx}{a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))}-\frac{(3 A+C) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{2 a}+\frac{(5 A+3 C) \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx}{2 a}\\ &=\frac{(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{(3 A+C) \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))}+\frac{(3 A+C) \int \sqrt{\cos (c+d x)} \, dx}{2 a}+\frac{(5 A+3 C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a}\\ &=\frac{(3 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(5 A+3 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{(3 A+C) \sin (c+d x)}{a d \sqrt{\cos (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 6.89749, size = 1163, normalized size = 7.75 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])),x]

[Out]

(((3*I)/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2
*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*
d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(
-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqr
t[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c
] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Co
s[c + d*x]) + ((I/4)*C*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/
4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin
[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[
c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c
])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*
x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))
/(a + a*Cos[c + d*x]) + (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*(-(((2*A + A*Cos[c] + C*Cos[c])*Csc[c/2]*Sec[
c/2]*Sec[c])/d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (4*A*Sec[c]*Sec[c + d*
x]^2*Sin[d*x])/(3*d) + (4*Sec[c]*Sec[c + d*x]*(A*Sin[c] - 3*A*Sin[d*x]))/(3*d)))/(a + a*Cos[c + d*x]) - (5*A*C
os[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*
x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[
c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (C*Cos[c/2 + (d*x)
/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
+ Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2])

________________________________________________________________________________________

Maple [B]  time = 0.387, size = 486, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*(2*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
))-2*A*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/
2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)+(A+C)*(cos(1/2*d*x+1/2*c
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c)^4 + a*cos(d*x + c)^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)